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ABSTRACT 

A new momentum-integral method has been devised for describing the incompress- 
ible flow of a conducting fluid in the entrance of an MHD channel. 
tive in that an lledge" s t ress  i s  permitted to exist at  the point of intersection of the 
boundary layer and the free stream. A prudent choice of the edge s t ress  variation 
forces the governing differential equation to yield an asymptotic solution with the correct 
wall s t ress .  Accurate analytical solutions a re  obtained for laminar flow with and with- 
out a magnetic field. Nonmagnetic turbulent flow is also well described by this method. 

The method is distinc- 
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A NEW MOMENTUM-INTEGRAL MET'HOD FOR TREATING MAGNETOHY- 

DRODYNAMIC AND SIMPLE HYDRODYNAMIC ENTRANCE FLOWS 

by R i c h a r d  E. S c h w i r i a n  

Lewis Research C e n t e r  

SUMMARY 

A new momentum-integral method has been devised for describing the incompress- 
ible flow of a conducting fluid in  the entrance of a magnetohydrodynamic (MHD) channel. 
The method is distinctive in that an "edgett s t r e s s  is permitted to exit at the point of in- 
tersection of the boundary layer and the free s t ream. The edge stress exerts a drag 
force on the free  s t ream and mathematically accounts for the fact that the "free" s t ream 
becomes less and l e s s  free as the fluid enters the channel. A prudent choice of the edge 
stress variation forces the governing differential equation to yield an asymptotic solution 
with the correct  wall stress. The edge stress method allows accurate analytical solu- 
tions of the laminar flow momentum integral equations to be obtained for  most reason- 
able initial conditions. Flows with and without magnetic fields can be treated. Nonmag- 
netic turbulent flow is also well described by this method. 

INTRODUCTION 

For  the designer of liquid-metal magnetohdryodynamic (MHD) generators o r  elec- 
tromagnetic pumps an accurate knowledge of wall shear  stresses is imperative. Indeed, 
the practicality of the MHD generator concepts considered by Elliott (ref. 1) and Patrick 
and Lee (ref. 2) depends largely on keeping the viscous pressure drops across  the de- 
vice to a minimum. The most obvious way of meeting this need is to keep such devices 
as short  as possible to minimize the time the fluid spends in  the high velocity - high 
shear  stress power generation section. It is quite possible, therefore, that fully de- 
veloped flow may never be attained in  a practical generator. If such is the case, the 
entrance flow problem is of prime importance. 

(ref. 3), Rossow (ref. 4), and Moffatt (ref. 5) consider the laminar flow of a fluid over 
A number of authors have considered the channel entrance flow problem. Dix 



a flat plate perpendicular to which a magnetic field is impressed. Dix's (ref. 3) solu- 
tions are numerical, Rossow (ref. 4) takes a Blasius series approach, and Moffatt 
(ref. 5) uses a momentum integral method. Moffatt (ref. 5) a lso considers turbulent 
flow. 
half-width a (see fig. 1) is very large relative to the boundary layer thickness 6 and the 
free s t ream is not significantly accelerated. Bodoia and Osterle (ref. 6), Schlicting 
(ref. 7), Shohet (ref. 8), Roidt and Cess  (ref. 9), Moffatt (ref. lo), Maciulaitis and 
Loeffler (ref. ll), and Dhanak (ref. 12) consider the more realistic laminar entrance 

These solutions are adequate descriptions of entrance flows only when the channel 

---.--f- t E  
-- - 
U Boundary layer edge ----__ 

_---- 
wall // 

Figure 1. -Magnetohydrodynamic (MHD) entrance flow. 

flow problem in which mass  conservation demands that the free s t ream velocity change 
when the boundary layer thickness changes. Bodoia and Osterle (ref. 6) and Schlicting 
(ref. 7) consider the nonmagnetic case with a uniform velocity profile at the entrance. 
Bodoia and Osterle (ref. 6) present a finite-difference technique; Schlicting (ref. 7) 
matches an upstream Blasius series solution to a downstream series solution whose 
zeroth order  te rm is the fully developed profile. Shohet (ref. 8) generalizes the work of 
Bodoia and Osterle (ref. 6) to include magnetic field effects. Similarly, Riodt and Cess 
(ref. 9) generalize Schlicting's method (ref. 7) to include magnetic field effects. Integral 
techniques are presented by Moffatt (ref. lo), Maciulaitis and Loeffler (ref. ll), and 
Dhanak (ref. 12). Moffatt (ref. 10) and Maciulaitis and Loeffler (ref. 11) assume simi- 
lar profiles: Moffatt uses a "Hartmann" profile; Maciulaitis and Loeffler assume a 
parabolic profile. Dhanak (ref. 12) uses a fourth power polynomial to represent the ve- 
locity profile, applying Karman-Polhausen type conditions to relate the arbi t rary con- 
stants. Finally, Maciulaitis and Loeffler (ref. 11) consider turbulent flow, using an in- 
tegral  method and a one-seventh power velocity profile. They also consider the case of 
nonmagnetically fully developed entrance conditions. 
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With the exception of the numerical techniques (refs. 3, 6, and 8), all of the pre- 
vious methods have restricted spatial regions of validity. In most cases  this means that 
the solutions obtained are valid only for  points sufficiently close to the entrance or suf- 
ficiently far downstream. , The purpose herein is to introduce an integral technique 
which (1) is valid throughout the channel, (2) gives accurate results with and without a 
magnetic field, (3) can be used with any reasonable entrance profile, including uniform 
entry and nonmagnetically fully developed entry, and (4) is good for laminar and re- 
stricted regions of turbulent flows. All this is made possible by the simple device of 
allowing a viscous edge stress t e rm to exist in the free s t ream momentum equation. 
This te rm represents the drag that the boundary layer exerts on the free stream. If the 
boundary layer - f r e e  s t ream model of the flow is to be a valid approximation every- 
where, such a stress must exist to satisfy the end conditions. If it is not included (as 
in refs. 4 to 7 and 9 to 12), the validity of the pressure distributions obtained is confined 
to a small  region near the entrance. 

The present investigation is concerned with determining the variation of the edge 
stress and obtaining analytical solutions for the friction factor and pressure defect. 
Both laminar and turbulent flows are considered. 

SYMBOLS 

a 

B 

cf 

( Cf) 

'f B 
E 

f 

K 

MH 
9 

8' 

Re 

channel half - width (Y - dir  e c tion) 

magnetic field strength 

local friction factor 

average friction factor 
Blasius friction factor, 0.664(p/pUX) 1/2 

electric field strength 

"edge" s t r e s s  function 

load parameter,  E/( U) B 
Hartmann number, Ba(a/p) 1/2 

2 pressure defect, (p - po)/p( U) 

hydromagnetic pressure defect, S + (4Mi/Re)~( 1 - K) 
Reynolds number, 4p( U) a/p 

magnetic Reynolds number, poaa( U) IK - 1 I 
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U free s t ream velocity 

( u) average velocity 

U 

U* dimensionless velocity, u/( U) 

V transverse velocity (Y-direction) 

X coordinate parallel to flow 

entrance length xe 
X x/a 
x1 

velocity in boundary layer (X-direction) 

4 x/Re 

x2 4 Mix/Re 

Y coordinate parallel to magnetic field 

Y y/a 

Z coordinate perpendicular to X and Y 

"L, "i, see eq. (21) 

see eq. (34) 

6 boundary layer thickness 

6* displacement thickness 

€ 

T a 

dimensionless boundary layer thickness, S/a 

E* E / € ,  

rl Y/6 

e momentum thickness 

I.1 viscosity 

permeability of free space PO 

P fluid density 

'e 

'W 

"edge" stress 

wall s t r e s s  

Subscripts : 

L laminar 

0 entrance value 

T turbulent 
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w wall 
00 asymptotic value 

ANALY S IS 

The problem concerns the flow of an incompressible, viscous, electrically conduct- 
ing fluid in  the entrance region of a channel (see fig. 1). The fluid is assumed to have 
scalar conductivity and viscosity. The width of the duct in the Z-direction is taken to be 
infinite so that the problem is two-dimensional in the independent variables X and Y. 
Constant electric and magnetic fields are impressed in the Z and Y directions, re- 
spectively. The slip magnetic Reynolds number 

Rem = poa - (U) 1:- I 
is taken to be small  so that the induced magnetic field is also small .  Finally, the fluid 
is assumed to be electrically neutral and Hall  effect-free. 

s t ream momentum integral equations (e. g . ,  refs. 10 to 12): 

Boundary layer: 

For the uniform entry case it is common to use the following boundary layer and free 

F r e e  stream: 

dU 
dX dx 
dp = OB(E - UBI - p u -  

Maciulaitis and Loeffler use equations (1) and (2) even for  the nonmagnetically fully de- 
veloped inlet condition. This is clearly a questionable procedure since, in this case, 
there is no reason to suspect that the pressure gradient is accurately given by equa- 
tion (2) near the inlet. Schlicting (ref. 7) and Roidt and Cess (ref. 9) also use equa- 
tion (2), but since theirs are Blasius series solutions, the unintegrated form of equa- 
tion (1) is used. 

Clearly, equations (1) and (.2) cannot hold for  large X because (1) the asymptotic 
solution T~ = OB U6* is not, in general, compatible with the correct  asymptotic solu- 
tion and (2) there is no shear  stress te rm in equation (2). Both of these difficulties s tem 
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from the same source. Equations (1) and (2) are only valid in  regions where a true 
boundary layer exists (i. e.,  a region where the Y-extent of the constant-velocity free 
stream is very large in comparison with the boundary layer thickness). The region near 
the inlet of the uniform entry case is an example of such a region. Far from the inlet 
the boundary layer thickness and free s t ream width can be of the same order of magni- 
tude. The result is that a velocity profile and shear stresses develop across  the entire 
channel in the real flow. In this way the downstream pressure gradient becomes depend- 
ent on the wall stress. If the boundary layer - free s t ream model is to produce a similar 
dependence, allowance must be made for a viscous coupling between the boundary layer 
and the free s t ream. This is done in the present work by permitting an edge stress to 
exist at the boundary layer edge Y = 6. 

sion of Prandtl’s boundary layer equations: 
The manner in which the edge stress enters can be seen by integrating the MHD ver- 

PU- au + PV -= au - a 7  - -+ dp aB[E - UBI 
ax ay ay dx 

The integration is performed over the variable Y for both the boundary layer and 
the free  stream. To compute the integrals of the inertia and Lorentz force terms in the 
free stream, the approximations u = U(X) and v = 0 are used. Also, a shear stress 

is allowed to act  at the boundary layer edge. The integrated equations of motion are ‘e 
the following ( E  = 6/a): 

Boundary layer: 

- d (pu  2 e) + pU6* -= dU T - - - DB2U6* 
dx d x w  (1 - 4 

Free stream: 

!E= DB(E - UBI - p u  - dU - 
dx dX a(1 - E )  

‘e 

(3) 

(4) 

A s  noted, the derivation of equation (4) assumes the velocity U is constant over a cross 
section of the free s t ream flow. This may be bothersome to the reader in that the exist- 
ence of shear stresses (in particular, an edge stress) in a flow demands that the velocity 
profile be nonconstant. The velocity U in equation (4) is, therefore, more aptly thought 
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of as an average value of velocity over the cross  section. However, for computational 
purposes, it is taken to be invariant with Y. 

The asymptotic condition is now 

Substituting equation (5) in  equation (4) and noting that dU/dX approaches zero  as X 
becomes large gives 

Equation (6) is the correct form for the balance of pressure,  shear  stress, and electro- 
magnetic forces in the fully developed flow. If,  further,  boundary layer - free s t ream 
model is chosen so that (1) the fully developed wall s t r e s s  7 is the correct  value 
and (2) the mean velocity 

w, * 

(U) = -  

is the correct  value, then the fully developed pressure gradient is automatically correct.  

stress 
values, assume momentarily that -re can be put in the form 

It is clear that, in order  that equations (3) and (4) be valid for all X, the edge 
T~ must vary. Since, at present, the only knowledge of T~ concerns its end 

E TWf (E*, E:, €m) 
1 - E  

Equations (3) and (4) then become the following: 

Boundary layer: 

d x w  
d 2 - (pu e )  + PUG* 
dx 
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Free stream: 

dU ‘wf -- ~ P - o B ( E - u B ) - ~ u - - -  
dx d X a  

The use of equations (8) and (9) now awaits only the selection of the boundary layer pro- 
files and the function f .  This will be done for laminar and turbulent flow separately. 

Laminar Flow 

The laminar flow profile is assumed to be parabolic: 

v =  27 - q 2 
U 

where q = Y/6. 

describes the true, downstream Poiseuille flow. 
This profile is chosen because it is simple and, for  zero Hartmann number, exactly 

The wall stress is then given by 

The derivative du/dY is zero at the boundary layer edge Y = 6. Although the idea of an 
edge stress T~ at a point where the velocity derivative is zero may seem contradictory, 
it should be remembered that the boundary layer - f ree  s t ream model is an approxima- 
tion to the t rue flow, which contains shear stresses throughout. Because of this approxi- 
mation the relation T = y(du/dY) cannot be used to calculate the viscous stresses at all 
points in the flow. In particular, it cannot be used at the boundary layer edge or in the 
free s t ream. The requirement of a nonzero stress at the boundary layer edge is not, 
therefore, a contradiction. It is a necessary condition if the boundary layer -free s t ream 
model is to yield accurate results both near  and far from the entrance. 

of E, a, and (U): 
When equation (10) is used, the quantities 8, 6*, and U can be computed in te rms  
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Inserting these equations together with equation (11) into equation (8) yields 

where 

A t  this point it is necessary to decide the manner is which the asymptotic boundary 
layer - f ree  s t ream solution shall approximate the true Hartmann flow. Above all, the 
asymptotic wall s t r e s s  and Hartmann wall stress should be equal. The latter is given 
by (ref. 13) 

. 
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The asymptotic boundary layer - free s t ream wall stress is given by equation (11). 
Noting that 6,= €,a and U = (U) / ( l  - ~ / 3 )  results i n  

Equating the previous quantities results in the quadratic equation 

6(1 - ta:HMH) 

MH tanh MH 
= o  2 

E ,  - 3E,+ 

The appropriate root of equation (13) for the present problem is 

The 
MH = 0. 
tion (12) 

selection of the 
The value of f 

to zero: 

€ , = - l -  3[ 2 /; (l- ta:HMH) 

MH tanh MH 

L -I 

negative root is based on the fact that 
at X = 03 is obtained by equating the 

4 2 
f(1, E ; ,  E , )  E f, = 1 - - E ,  

6 

E must equal one 
right-hand side of 

' when 
equa- 

(15) 

The initial values of f depend on the inlet conditions. The two obvious cases  are 
the (1) uniform velocity and (2) fully developed (Poiseuille flow) profiles. The values of 
E and f at the inlet are, therefore, as follows: 

Uniform velocih inlet: 

I Eo = 0 

f(E$ E; ,  E , )  fo  = 0 
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Fully developed inlet: 

1 Eo = 1 

f k;, E ; ,  E") = fo  = lJ 

In the uniform velocity case, fo = 0 so that the flow near the inlet is Blasius-like. 
In the fully developed case, fo is one for zero magnetic field strength (eq. (15) for 
MH = 0). 

has not been able to deduce the functional relation of f to the other variables in the 
problem although this may, indeed, be possible. Instead, an inductive approach which 
uses certain known limiting solutions is used. The function f is required to be such 
that the solutions of equation (12) are consistent with these limiting solutions. The re- 
quirements are now listed: 

(a) The function f should be such that E varies monotonically with x. That is, i f  
E ,  > eo, E should monotonically increase, and, if  E" < eo, E should monotonically 
decrease. 

Equations (15) to (17) summarize all that is known of the function f .  This author 

(b) For large x-values, E* should be expandable in the form (refs. 7 and 9) 

E* = 1 - alexp(-Xlx) + . . . (18) 

(c) For  the uniform inlet case at low x-values, E* should be expandable as (refs. 7 
and 9) 

E* = (x)l12(b1 + b2x112 + b3x + . . .) 

when E" is of order 1. 
(d) For the uniform inlet case at low x-values, E* should be expandable as (ref. 4) 

E* = (x)1'2(c1+ C$+ c3x 2 + . . .) 

when E~ is very small  compared to unity. 
(e) As x - 00, the value of E* should approach unity. 
For the case f = 0, the solutions of equation (12) satisfy conditions (a) to (d). It is, 

therefore, logical to choose f so that the right-hand side of equation (12) has the same 
kind of dependence on E* as it does when f = 0. However, when f = 0, the resulting 
solutions do not satisfy condition (e). One choice of f which has the appropriate depend- 
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ence on E*, but which also satisfies conditions (e), is obtained by demanding that the 
right-hand side of equation (12) be directly proportional to (1 - ~ * 2 )  or 

With this choice, the solutions of equation (12) asymptotically approach the condition 
E* = 1 when X becomes large. The proportionality constant 'YL is chosen by insisting 
that equation (21) be compatible with the entrance conditions (e. g. , eq. (16) or (17)). 
The result is 

120 a -  L-Re I 1 - Ef 

L 

If one uses this definition of aL, equation (21) can be put in the form 

Af f = fo + - (€*2 - E . 2 )  0 

AE*2 

where 

- fo Af = f, 

It is clear that a more arbi t rary choice of f would not satisfy a11 of conditions 
(a) to (e). For  instance, a choice which makes the right-hand side of equation (21) equal 
to ai( 1 - E*) would satisfy every condition but (d) . This does not preclude other possi- 
bilities, of course. However, the one given by equation (21) is reasonable, simple, and 
provides accurate analytical solutions. 

entrance case. 
Therefore, the behavior of f according to equation (22) does not necessarily apply to 

The criteria (a) to (e) say nothing of the near  entrance behavior of the fully developed 
This is because, to this author's knowledge, no such information exists. 
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this case. However, since the chosen f is not necessarily inapplicable and since no 
other solutions are available, calculations are performed for  this case also. 

Substituting equation (21) gives equation (12) as 

which can be rearranged to give 

Equation (24) can be integrated by partial  fractions to yield 

where 
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27 504 = 

- i) 
Using equation (1 1) and the continuity relation U = (U) /( 1 - E , E * / ~ )  gives the local 

friction factor CfL in the form 

The average friction factor (CfL) is given by 

1 

-*4 

where 

401 *,= - 
(:- 1) 

17 

14 



*3 = * z  - *I 

t 

Finally, the dimensionless pressure  defect 8, is obtained by solving for  T ~ / (  1 - E )  'in 
equation (3) , substituting into equation (4) using the relations 6 = E a  and U = (U) /( 1 - ~ / 3 ) ,  
and integrating the resulting equation. This gives 

t 

where K = E/( U) B. 

The entrance length problem €or turbulent flow is complicated by the fact that no 
simple formula for the fully developed flow is known €or arbi t rary magnetic field 
strengths. Murgatroyd (ref. 14) provides experimental resul ts  in the Reynolds number 

4 range 10 < Re < lo5. His  experiments show that the wall shear  stress varies from the 
Blasius formula value at zero Hartmann number to the Hartmann value at high Hartmann 
numbers. The behavior is such that, except for a. small  region near MH = 0, the wall 

cellent dimensional analysis of the fully developed flow and shows that the fully developed 
wall stress depends specifically on the parameters Re, MH/Re, and M 
nately, he is unable to evaluate certain unknown functions of these parameters for all 
magnetic field strengths. Therefore, rather than attempt an analytical description of the 
downstream flow, the results of Murgatroyd (ref. 14) are used to obtain T ~ ,  -. 

0 

.I stress monotonically increases with Hartmann number. Harr is  (ref. 15) has done an ex- 

Re. Unfortu- :I 
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For present purposes it is assumed that the velocity profile and wall stress are 
given by 

u 1/7 
- =  77 
U 

and 

7 --- 
-ppu2( 21/2 pU6 Y4 (30) 

where P = (0.  O225)2lI2 = 0.0318. 

that already outlined for laminar flow, the governing equation for turbulent flow: 

7 

By using equations (29) and (30) in  equation (8), one obtains, in a manner s imilar  to 

Letting 

(€9514 = (1 - !f4,,5/4 

using the approximations 

d ( ~ ’ ) ~ / ~  E (1 - f) 3/4 de* 5/4 

( l - $  N -  - 1 
7 + 2 E  2 I 7 + 2E0 7 + 2E, 

J 
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I' - - 

and assuming that 

gives equation (3 1) as 

h 

where 
r 

f = f  + Af k ' 5 / 4  - .'5/4) 
0 5/4 

0 
A€' 

!E.-= 514 CYT(l - 6' "4) 
dx 

(1 - fo) 

5/4 
E' 
0 

+ -  8 
+ 2E0 7 + 2 E C 4  

The solution to equation (34) is 

(33) 

(34) 

(35) 

Unlike the laminar flow case the variation of the function f (eq. (33)) is not easily justi- 
fied. The only justifications offered here are that the variation given strongly resembles 
equation (22) for the laminar flow and the simple form of the solution given by equa- 
tion (36) would be impossible otherwise. Also, any variation of f that satisfies both end 
conditions is better than simply omitting f entirely, which is what is inadvertently done 
in references (5) and (11). 

for turbulent flow as well. The value of coo is obtained by equating the known value of 
7 to the value given by equation (30). The local friction factor CfT is approximated 

i A s  in  laminar flow the two entrance conditions given by equations (16) and (17) apply 

1 W 
by 
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with E approximated from equation (32) as 

Equation (38) is slightly inaccurate at small x-values but approaches the value given 

The average value ( CfT) is obtained from 
by equation (32) as x increases. 

1 
Q X  T 

- -- [r E' 'fT 

0 

1 - E' 5/4 
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where 

j= 1 

277 
5 

= - COS - = - 0.30902 

7T 
W 2  = COS - = 0.80902 

5 

1 (1+ wl) 
5 A, = - 
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B2 

Finally, the pressure defect PT is given by 

2 n - n  
) - -  4MH x(l - K) + 

Re 
9 "') (41) 

DISCUSSION 

Laminar Flow 

Figures 2(a) and (b) show the laminar flow velocity developments for MH = 0 and 
M = 4 with uniform entrance conditions. These are compared with the numerical solu- 
tions of Bodoia and Bsterle (ref. 6) and Shohet (ref. 8). Even though the f r ee  s t ream 
veloci,ties (large y-values) are somewhat in  e r ro r ,  the velocities near the wall (small  
y-values) follow the numerical solutions quite closely. For friction factor calculations 

H 

y = Yla 
Present work _----------- --- Bodoia and Osterle's 1.07, 1.5- 

.27 , .  --_ 
I _ 1 - - _ _ 1  .- I. I 

.08 .IO .I4 .I6 .I8 .20  
I 1 

.12 
. 5  I I 

0 .02 .04 .06 
x1 = 4xlRe 

(a) Hartmann number, MH = 0. 

Figure 2. -Laminar flow velocity development. 
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. 3  

I I 
.08 .09 .IO 

I 
.07 

I 
.06 

I 
.05 

x1 = 4xlRe 

I 
.04 

I 
.03 

I 
.02 

I 
. 01 

. I  I 
0 

-_---- 
\ -_-- L-/--- 

--------- 
7- 

(b) Hartmann number, MH = 4.0. 

Figure 2. -Concluded. 

XI = 4xlRe 

0 .02 .04 .06 .08 .IO .12 .14 .16 .18 .20 
h I 1 I I I I I 1 7  

- Present work 1- 
--- Bodoia and Osterle's 

data (ref. 6 )  

(a) Hartmann number, MH = 0. 

Figure 3. -Laminar flow pressure defect development. 
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-Present work 
--- Shohet's data (ref. 8) 

XI = 4HRe 

(b) Hartmann number, MH = 4; un i form entry  only. 

Figure 3. -Concluded. 

only the accuracy of the velocities near the wall is relevant. Figure 2(b) also shows the 
development for the fully developed entrance case (Poiseuille flow) for MH = 4. The 
flow is as one might expect - deceleration at high y-values, acceleration at low y-values. 
No comparisons with nuae r i ca l  solutions are possible here since, to this author's know- 
ledge, no such solutions have been obtained. 

F igwes  3(a) and (b) illustrate the pressure defect development corresponding to 
figures 2ia) and (b). In figure 3(b), the load parameter was also varied and its effect is 
evident. The agreement is excellent. 

and both entrance conditions. 
Figure 4 shows the hydromagnetic pressure defect LPk development for MH = 4 

The hydromagnetic pressure defect is defined as 

4 M i  

Re 
BjL=gL+-x(P - K )  

From equation (25) it can be seen that B i  is independent of the electric field. Figure 4 
indicates a less severe entrance pressure drop for the fully developed entrance condi- 
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4 

55 - 0 
V- 

1 

- Uniform entry 
Ful ly  developed ent ry  --- 

4- 
- Present work for M 100 
--- Heywood and Moffatt7;ef. 16) 

Dix's data (ref. 3) for 
M$Re2 = 10-3/16 

- 

2- 

0 -,J--- 
I I I I I I I I I  I I I I I I l l 1  

_e-- 

Figure 4. -Laminar  flow hydromagnetic pressure defect for Hartmann number MH = 4. 
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tion. It also shows that, for  this case, a greater distance from the entrance is required 
for the pressure gradient to approach its asymptotic value. 

Figure 5 is a comparison of the present work with the numerical flat plate results of 
Dix (ref. 3) and the momentum integral - Hartmann profile method of Heywood and 
Moffatt (ref. 16). The solution given by equation (26) is representative of flat plate results 
only when the Hartmann number MH is very large. Otherwise, the free stream veloc- 
ity varies with X. The value MH = 100 was chosen as being representative of a large 
Hartmann number. It can be seen that the agreement is again quite good. 

- Uniform entry 
--- Nonmagnetic fu l l y  developed entry 

Figure 6. -Entrance lengths for laminar and turbulent flows. 
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Entrance lengths for both entrance conditions are depicted in figure 6. The en- 
trance length Xe is defined here  as the distance from the entrance at which the corre-  
sponding E(X) satisfies 

E - E o  = 0.99(€, - Eo) (43) 

It is evident that the entrance lengths for the fully developed entrance case are siz- 
ably larger  than for  the uniform entrance case. 
approach constant values as MH becomes small. 

The behavior is s imilar ,  however; both 

Tu r bu I e nt Flow 

When the Hartmann number is zero, equations (29) and (30) should be adequate to 
describe the turbulent flow entrance problem. 
form inlet case only, of course) and the following quantities were obtained: 

This problem was examined (for the uni- 

Xe = 12. 1 Re1I4a (44) 

A g T  = 0.088 (45) 

where Xe is the entrance length, and A g T  is defined as 

The quantity A q T  is therefore the difference between the dimensionless pressure drop 
in a very long section of channel where the flow is fully developed (first te rm in brackets) 
and the drop in an equal-length channel with entrance effects pT. 

Hartmann numbers other than zero. Asymptotic wall shear stresses computed from 
Murgatroyd's (ref. 14) data frequently yielded negative edge s t resses  and, for some 
Hartmann numbers, boundary layer thicknesses greater than the channel half width. 
Both of these resul ts  a r e  physically meaningless. 

The only reason for trying equations (29) and (30) at MH # 0 is simply expedience; 
no better models are available. However, the erroneous resul ts  mentioned in the pre- 
ceding paragraph indicate than any computations based on these resul ts  would also be 
erroneous. Hence, no calculations were performed. Clearly, if a meaningful descrip- 

Equations (29) and (30) were found to be inadequate for describing the flow at 
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tion of the asymptotic flow cannot be found, there is no point in  making entrance flow 
calculations. It should be apparent, however, that this is not a shortcoming of the edge 
stress method. 

CO NC LU DING REMARKS 

A momentum integral method has been developed for describing the incompressible 
flow of a conducting fluid in  the entrance of an MHD channel. The method is amenable to 
various initial conditions and the wall shear  stress asymptotically approaches the correct  
downstream value. All  this is possible by introducing a boundary layer edge s t ress ,  the 
correct  choice of which forces the governing differential equation to the correct  asymp- 
totic solution. The technique is accurate for describing laminar entrance flows, with or  
without a magnetic field. 

ledgable choice of boundary layer velocity profiles and wall stresses. In the present 
work one-seventh power velocity profiles and Blasius formula wall stresses are used. 
This description is found to be good for a Hartmann number of zero  but inadequate other- 
wise. 

Turbulent flow without a magnetic field can also be analyzed. 
The analysis of turbulent entrance flow in a magnetic field is dependent on a know- 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, February 7, 1969, 
129-02-01- 13-22. 
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